Holistic recognition of handwritten character pairs

نویسندگان

  • Xian Wang
  • Venu Govindaraju
  • Sargur N. Srihari
چکیده

Researchers have thus far focused on the recognition of alpha and numeric characters in isolation as well as in context. In this paper we introduce a new genre of problems where the input pattern is taken to be a pair of characters. This adds to the complexity of the classi"cation task. The 10 class digit recognition problem is now transformed into a 100 class problem where the classes are M00,2, 99N. Similarly, the alpha character recognition problem is transformed to a 26]26 class problem, where the classes are MAA,2,ZZN. If lower-case characters are also considered the number of classes increases further. The justi"cation for adding to the complexity of the classi"cation task is described in this paper. There are many applications where the pairs of characters occur naturally as an indivisible unit. Therefore, an approach which recognizes pairs of characters, whether or not they are separable, can lead to superior results. In fact, the holistic method described in this paper outperforms the traditional approaches that are based on segmentation. The correct recognition rate on a set of US state abbreviations and digit pairs, touching in various ways, is above 86%. ( 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Holistic Farsi handwritten word recognition using gradient features

In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...

متن کامل

A Holistic Approach to Handwritten Numeral Pair Recognition Based on Generative Models of Numeral Pairs

This paper proposes a model based holistic approach to recognition of handwritten numeral pairs. The models of numeral pairs are generated as the combinations of two corresponding numerals. Each numeral is modeled as a set of polygonal lines. We find out two bounding boxes of numerals in the skeleton of the input image and use them to determine the appearance of each numeral in the generated mo...

متن کامل

The Role of Holistic Paradigms in Handwritten Word Recognition

ÐThe Holistic paradigm in handwritten word recognition treats the word as a single, indivisible entity and attempts to recognize words from their overall shape, as opposed to their character contents. In this survey, we have attempted to take a fresh look at the potential role of the Holistic paradigm in handwritten word recognition. The survey begins with an overview of studies of reading whic...

متن کامل

A Holistic Approach for Handwritten Hindi Word Recognition

Holistic word recognition attempts to recognize the entire word image as a single pattern. In general, it performs better than segmentation based word recognition model for known, fixed and small sized lexicon. The present work deals with recognition of handwritten words in Hindi in holistic way. Features like area, aspect ratio, density, pixel ratio, longest run, centroid and projection length...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2000